Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
ACS Appl Mater Interfaces ; 14(47): 53241-53249, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: covidwho-2119314

RESUMEN

Shortages of personal protective equipment (PPE) at the start of the COVID-19 pandemic caused medical workers to reuse medical supplies such as N95 masks. While ultraviolet germicidal irradiation (UVGI) is commonly used for sterilization, UVGI can also damage the elastomeric components of N95 masks, preventing effective fit and thus weakening filtration efficacy. Although PPE shortage is no longer an acute issue, the development of sterilizable and reusable UV-resistant elastomers remains of high interest from a long-term sustainability and health perspective. Here, graphene nanosheets, produced by scalable and sustainable exfoliation of graphite in ethanol using the polymer ethyl cellulose (EC), are utilized as UV-resistant additives in polyurethane (PU) elastomer composites. By increasing the graphene/EC loading up to 1 wt %, substantial UV protection is imparted by the graphene nanosheets, which strongly absorb UV light and hence suppress photoinduced degradation of the PU matrix. Additionally, graphene/EC provides mechanical reinforcement, such as increasing Young's modulus, elongation at break, and toughness, with negligible changes following UV exposure. These graphene/EC-PU composites remain mechanically robust over at least 150 sterilization cycles, enabling safe reuse following UVGI. Beyond N95 masks, these UVGI-compatible graphene/EC-PU composites have potential utility in other PPE applications to address the broader issue of single-use waste.


Asunto(s)
COVID-19 , Grafito , Humanos , Elastómeros , Poliuretanos , Rayos Ultravioleta , Pandemias
2.
J Enzyme Inhib Med Chem ; 36(1): 497-503, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-1045926

RESUMEN

COVID-19 has become a global pandemic and there is an urgent call for developing drugs against the virus (SARS-CoV-2). The 3C-like protease (3CLpro) of SARS-CoV-2 is a preferred target for broad spectrum anti-coronavirus drug discovery. We studied the anti-SARS-CoV-2 activity of S. baicalensis and its ingredients. We found that the ethanol extract of S. baicalensis and its major component, baicalein, inhibit SARS-CoV-2 3CLpro activity in vitro with IC50's of 8.52 µg/ml and 0.39 µM, respectively. Both of them inhibit the replication of SARS-CoV-2 in Vero cells with EC50's of 0.74 µg/ml and 2.9 µM, respectively. While baicalein is mainly active at the viral post-entry stage, the ethanol extract also inhibits viral entry. We further identified four baicalein analogues from other herbs that inhibit SARS-CoV-2 3CLpro activity at µM concentration. All the active compounds and the S. baicalensis extract also inhibit the SARS-CoV 3CLpro, demonstrating their potential as broad-spectrum anti-coronavirus drugs.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Flavanonas/farmacología , Extractos Vegetales/farmacología , Inhibidores de Proteasas/farmacología , SARS-CoV-2/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Animales , COVID-19/enzimología , COVID-19/virología , Chlorocebus aethiops , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Humanos , Técnicas In Vitro , Modelos Moleculares , SARS-CoV-2/enzimología , Scutellaria baicalensis , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA